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Abstract

We show that control function estimators (CFEs) of the firm production func-

tion, such as Olley-Pakes, may be biased when productivity evolves with a firm-

specific drift, in which case the correctly specified control function will contain a

firm-specific term, omitted in the standard CFEs. We develop an estimator that

is free from this bias by introducing firm fixed effects in the control function. Ap-

plying our estimator to the data, we find that it outperforms the existing CFEs

in terms of capturing persistent unobserved heterogeneity in firm productivity.

Our estimator involves minimal modification to the standard CFE procedures

and can be easily implemented using common statistical software.
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1 Introduction

Much of the empirical literature on firm-level productivity relies on estimating the

production function. A well-known problem in this literature is what Griliches and

Mairesse (1998) call the transmission bias – a bias in input elasticity estimates caused by

a correlation between factor inputs and unobserved firm productivity. Olley and Pakes

(1996) introduced a control function estimator (CFE) which has become a popular

solution to this bias. Their approach was to control for the correlation between factor

inputs and unobserved firm productivity by proxying the latter with a function of

observed firm characteristics that reflect a firm’s reaction to productivity changes.

Several studies have since emerged, extending the classical Olley-Pakes CFE (CFE-

OP) estimator to address its limitations. However, the available CFEs still rely on a

number of assumptions which are rarely tested. Among those is the assumption that

total factor productivity (TFP) follows a first-order Markov process that is homoge-

neous for all firms; that is, ωit = E[ωit|ωit−1] + vit, where ω is the TFP, v is the i.i.d.

innovation term, and i and t are firm and time indicators, respectively. In this paper,

we extend this assumption to include a firm-specific unobserved heterogeneity term ηi,

specifying ωit = E[ωit|ωit−1, ηi] + vit, micro-found this extension, and show that the

conventional CFEs will be inconsistent unless all ηi = 0. We then derive a CFE with

firm fixed effects (CFE-FE) that controls for ηi 6= 0 and apply it to two widely-used

data sets.

Our work is motivated by the fact that, while substantial and persistent productivity

differences between firms have long been seen in the data (Bartelsman and Doms,

2000; Syverson, 2011), the available CFEs lack controls for firm heterogeneity in TFP.

This deficiency, which has been recognized as one of the serious limitations of the

CFE approach (Eberhardt and Helmers, 2010), may cause transmission bias in the

production function estimates. Especially prone to this bias is the coefficient on capital
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input, since capital is likely to be more highly correlated with the persistent productivity

component than other inputs because capital adjustment costs are higher.1 Another

motivation for our effort to incorporate firm heterogeneity in the CFE framework is

the observation from Aw (2002), as well as from our data, that firm productivity only

gradually converges to its steady-state level, and that this level varies by firm. The

productivity dynamics we observe are consistent with a Markov process with a firm-

specific drift; yet, the conventional CFEs assume the productivity specification without

a drift.

We derive a set of moment conditions for a consistent CFE under the specification of

TFP extended to include a firm-specific drift. The resulting estimator, CFE-FE, differs

from the conventional CFEs in that it controls for firm fixed effects in the estimation

procedure, which we micro-found. Specifically, applying a selection of the conventional

CFEs to the manufacturing firm data from Denmark and Chile, we find a significant and

lasting autocorrelation in their regression residuals. We attribute this autocorrelation

to the presence of a persistent TFP component that the control function and the TFP

specification with ηi = 0 failed to capture. This residual autocorrelation is greatly

reduced when we apply the CFE-FE, implying that our estimator captures a large

part of the firm-specific persistence in productivity. An additional advantage of our

estimator is its conceptual simplicity and ease of implementation: in particular, it can

be run using existing Stata commands (.do files available from the authors).

In the rest of the paper, we outline the existing CFEs starting with CFE-OP (Sec-

tions 2.1-2.2), and show how unaccounted persistence in the TFP leads to the trans-

mission bias (section 2.3). Then, in Section 3, we explain how introducing fixed effects

in the CFE framework can mitigate this bias and provide details on our new CFE-FE.

We apply a selection of CFEs to the Chilean and Danish manufacturing firm data in

1Since labor or material input adjustment costs are relatively low, their response to short-term
productivity shocks will be higher than that of capital.
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section 4, showing in particular the large difference in residual persistence between the

existing CFEs and CFE-FE. Section 5 concludes.

2 Control function-based estimators (CFEs)

Consider a Cobb-Douglas production function (in logs):

vait = litβl + kitβk + uit (1)

uit =ωit + e1,it,

where i, t are the firm and year indicators, respectively, vait is value added, lit is the

vector of static inputs, such as labor, which can vary freely at each t, kit is a vector of

dynamic inputs, such as capital, which are partly determined by their previous stock.

The term uit, unobservable to the econometrician, is the empirical equivalent of Hicks-

neutral productivity. It is the sum of total factor productivity (TFP) ωit, which is

observed by the firm and hence affects its input choices, and random noise e1,it, which

is unobserved and does not affect input choices. Though ωit can be correlated with lit

or kit, we restrict e1,it to be orthogonal to lit, kit, and ωit.

Estimating equation (1) with OLS will result in biased and inconsistent estimates

of βl and βk because a firm’s choice of input quantities depends on its TFP: more

productive firms will use more, resulting in the transmission bias mentioned in the

introduction. One approach to deal with such bias is to proxy TFP with a function

of observables, called a control function. This section gives an overview of existing

control function estimators (CFEs) and outlines the key assumptions required for their

consistency, showing that some of them are quite fragile. The next section presents our

proposed estimator that can be a solution when some of these assumptions fail to hold.
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2.1 The Olley-Pakes estimator (CFE-OP)

The Olley and Pakes (1996) CFE-OP estimator deals with the endogeneity problem

arising from the correlation between input factors and TFP ωit by using a control

function of observables that carry information on ωit. The estimation procedure relies

on several assumptions common to other CFEs as we outline below. The original CFE-

OP contains a correction for potentially endogenous firm entry and exit, which can be

implemented in our setting if necessary. For the sake of simplicity, we do not implement

this correction in this paper, focussing instead on the main issue of interest – the control

function.

Assumption 1 kit at time t is predetermined, while lit is freely adjustable for each t.

The second part of Assumption 1, regarding the scope for adjusting the labor input

lit as well as other static inputs, is relaxed in later modifications of the CFE-OP which

we review in the next subsection.

Assumption 2 (“Scalar unobservability”) The investment function iit is fully deter-

mined by the dynamic inputs kit, the TFP ωit, and, possibly, other observable variables

zit.

Under Assumptions 1 and 2, the firm investment level that solves the dynamic profit

maximisation problem can be represented as a function of the state variables (kit, zit)

and TFP:

iit = φ (ωit, kit, zit) (2)

Assumption 3 The investment function iit = φ(ωit, kit, zit) in (2) is monotonic in ωit.

Assumption 3 implies that the control function can be specified by inverting the invest-

ment function (2) for ωit:

ωit = g (kit, iit, zit) (3)
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Putting the control function (3) back in the production function (1) gives the first-

stage CFE-OP regression:

vait = litβl + kitβk + g (kit, iit, zit) + e1,it (4)

The unknown function g (·) is approximated with a polynomial of a fixed (usually third)

order in (kit, iit, zit), denoted g̃(·). 2 Approximating g (·) with g̃(·) does not allow βk to

be estimated from (4) but does allow the recovery of the coefficient estimates for static

factor inputs, β̂l, and the estimated composite term Φ̂it that captures the TFP and the

dynamic inputs,

Φit ≡ Φ (kit, iit, zit) = kitβk + g (kit, iit, zit) , (5)

from the following first-stage regression:

vait = litβl + Φ (kit, iit, zit) + e1,it. (6)

Estimating βk requires an additional assumption on TFP:

Assumption 4 ωit follows the first-order Markov process: ωit = E [ωit|ωit−1] + e2,it,

where e2,it is an innovation term satisfying E [e2,it|ωit−1] = 0.

Under Assumption 4, for a given βl, it follows from (1) that

E [vait − litβl|kit, ωit−1] = kitβk + E [ωit|kit, ωit−1] + E [e1,it + e2,it|kit, ωit−1]

and E [e1,it + e2,it|kit, ωit−1] = 0 by construction, since kit is pre-determined from As-

2As a robustness check, we have also tried a second- and a fourth-degree polynomials, both giving
very similar regression estimates and diagnostic statistics. In particular, the shares in the residual
variance accounted by the third- and fourth-degree polynomials in (kit; iit; zit) are within 0.005 from
each other.
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sumption 1 and e1,it is orthogonal to (lit, kit, ωit). The regression

vait − litβl = kitβk + E [ωit|ωit−1] + eit

with eit = e1,it + e2,it is then well-defined and has no endogeneity problem. Letting

E [ωit|ωit−1] = h (ωit−1) and noting that ωit−1 = Φit−1 − kit−1βk from (3) and (5), βk

can be consistently estimated from the second stage regression

vait − litβ̂l = kitβk + h
(

Φ̂it−1 − kit−1βk
)

+ eit, (7)

with the unknown function h (·) again approximated by a fixed-order polynomial and

β̂l and Φ̂it−1 obtained from the first-stage regression (6).

2.2 Extensions of the Olley-Pakes estimator

Several limitations of CFE-OP have been identified since it was introduced, motivating

other CFEs as its extensions. One such limitation is that in practice many firms report

zero investment, which casts doubt on the monotonicity of the investment function

(Assumption 3). In particular, the presence of capital adjustment costs could violate the

monotonicity assumption, making the investment function non-invertible. To address

this concern, Levinsohn and Petrin (2003) include intermediate inputs, such as materials

which are always positive, in the control function. Thus, the proxy for productivity in

their CFE-LP estimator is

ωit = g(kit,mit, zit), (8)

where mit is log materials input. Like investments, materials are chosen optimally by

firms given the state variables, but the adjustment costs of materials are arguably lower

than of capital investment, so that the monotonicity assumption is less likely to fail.
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Another potential problem with CFE-OP and CFE-LP, discussed in Ackerberg,

Caves, and Frazer (2015), is that the coefficient on labor input may not be identifiable

at the first stage. This problem will arise if labor input is optimally chosen by firms upon

observing their productivity, in which case it becomes a function lit = ϕ (kit, zit, ωit).

Substituting the expression for ωit from equation (8), lit = ϕ (kit, zit, g(kit,mit, zit)).

That is, labor input becomes a function of the same variables as the control function,

which precludes identification of its coefficient, βl, at the first stage. The solution

proposed by Ackerberg, Caves, and Frazer (2015) is to estimate βl from the second

stage, using the estimate of the control function from the first stage and Assumption 4.

Their procedure amounts to estimating the following (nonlinear) regression equation:

vait = litβl + kitβk + h
(

Φ̂it−1 − lit−1βl − kit−1βk
)

+ eit, (9)

which differs from the standard procedure in equation (7) in that the coefficients on

capital and labor are estimated together. Wooldridge (2009) proposes a GMM pro-

cedure that estimates all the coefficients in the production function in one stage by

directly approximating the function h(.) in (9) with a polynomial in (k, l,m, z). This

estimator is somewhat simpler to implement because it is linear and does not rely on the

estimates of Φ(.) from the first stage, thus avoiding bootstrapping to compute standard

errors. The linearity of Wooldridge (2009) estimator is particularly important for our

purposes because running a nonlinear estimator with high-dimension fixed effects may

be computationally challenging.

In our estimation procedure, we combine the choice of the instruments for the control

function in CFE-OP and CFE-LP with the flexibility of the Wooldridge (2009) GMM

estimator. This combination results in what we label as the CFE-WOP estimator by
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running

vait = litβl + kitβk + f (kit−1,mit−1, zit−1) + eit (10)

with the moment conditions

E (eit|kit, lit−1, kit−1,mit−1, zit−1) = 0, (11)

where m is log materials input, and f(·) is approximated by a polynomial function in

(kit−1,mit−1, zit−1).
3 We adopt this CFE-WOP as the baseline estimator in this study.

Yet another potential issue with CFE-OP and CFE-LP is the fragility of the scalar

unobservability Assumption 2, the failure of which results in inconsistent estimates. To

illustrate, consider CFE-OP and define rit = g(kit, iit, zit)−g̃(kit, iit, zit) as the difference

between TFP ωit = g(kit, iit, zit) and its polynomial approximation g̃(kit, iit, zit). In the

standard case, rit will be a part of the regression residuals and can be made arbitrarily

small by increasing the degree of the polynomial in g̃(·). However, if we omit important

variables in the investment function φ (·) (and hence in the control function), rit will

be a function of the omitted variables. In this case rit cannot be made arbitrarily small

by increasing the order of polynomial approximation. Huang and Hu (2011) develop

a maximum likelihood estimator that is robust to the presence of measurement error

in the proxy variable (or, equivalently, omitted variables in zit). Their solution is to

use another proxy variable that is independent of the original proxy conditional on

unobserved productivity. In their estimation procedure, one proxy variable works as an

instrument for the other, producing unbiased control function estimates. Their estima-

tor can outperform the alternatives, such as Ackerberg, Caves, and Frazer (2015), in

the presence of measurement error in the proxy variable. This type of non-degenerating

3Alternatively, one can estimate the same specification with gross output as the dependent variable,
in which case one should use instruments other than the current materials input in the control function
(for example, investment).
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approximation error problem can also happen when Assumption 4 is violated, which

we further explore in the next section.

2.3 Persistence in the TFP process and its consequences

In this section we describe another situation in which existing CFEs will give inconsis-

tent estimates: the presence of firm-specific persistence in TFP. Suppose TFP follows

a first-order Markov process conditional on a random variable ηi with a finite second

moment and E[e1,it|ηi] = 0,

ωit = E [ωit|ωit−1, ηi] + e2,it, (12)

where e2,it satisfies E [e2,it|ωit−1, ηi] = 0. The specification of TFP in (12) is a gen-

eralization of the first-order Markov condition in Assumption 4 underlying CFE-OP.

The existing CFEs all assume homogeneous dynamics in TFP, that is, ηi = 0. If in

fact ηi 6= 0, the consequence of this assumption is a misspecified second-stage CFE

regression (7) which restricts ηi = 0 or, equivalently, misspecified moment conditions

(11) which omit ηi. These misspecifications will result in inconsistent CFE estimates if

factor inputs or proxy variables are correlated with ηi.

Firm-specific persistence in productivity, which is consistent with specification (12),

can be observed in the data. For illustrative purposes, take a simple example of (12),

a first-order stationary autoregressive process with a firm-specific drift,

E [ωit|ωit−1, ηi] = ηi + γωit−1 (13)

with 0 < γ < 1. The above specification implies that each firm has its steady-state

productivity level, ηi/(1 − γ), that it gradually approaches. The distinct statistical

“signature” of such a specification is slower productivity growth in older firms which
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are closer to their steady-state productivity. Aw (2002) finds this pattern in firm data

from Taiwan, observing that productivity grows faster in already more productive firms,

but this accelerating productivity growth slows down with firm size. As more productive

firms tend to be larger, the finding of productivity growth decelerating with size implies

a gradual convergence of firm productivity to its steady-state level.

We observe similar productivity dynamics in our data, too. Figure 1 reports average

productivity by firm age in the Chilean and Danish manufacturing sectors, for three

measures: average value added per worker in all firms of a given age (Panel A), the

same adjusted for firm survival probability (Panel B), and the same calculated relative

to the average productivity of all firms in a given year (Panel C). For all three measures,

productivity grows faster in newer firms and slows down as firms get older and bigger.

A first-order Markov process without a drift (Assumption 4) would not generate such

productivity patterns, because then the average of the firm productivity levels would

fluctuate around some stable level without positive dynamics for newer firms. Moreover,

breaking down the sample of market entrants by terciles of TFP in the first year of entry

(Figure 2), we find the same dynamic pattern in all terciles, but the productivity levels

in different terciles converge to distinctively different values. Hence, not only is there a

drift in TFP but also this drift is firm-specific.

[Figures 1, 2 here.]

3 The CFE with firm fixed effects

In this section, we develop a new CFE estimator with firm fixed effects, labelled CFE-

FE. Unlike other CFEs, CFE-FE is consistent in the presence of firm-specific persistence

in productivity as specified in (12).
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3.1 CFE-FE: The consistent estimator under firm-specific per-

sistence in TFP

The estimator we present in this section is based on Assumptions 1-3 and the following

generalization of Assumption 4 (recall the TFP specification in equation (12)):

Assumption 4′ TFP ωit follows the first-order Markov process conditional on a ran-

dom variable ηi with a finite second moment: ωit = E [ωit|ωit−1, ηi] + e2,it, where

E [e2,it|ωit−1, ηi] = 0 and E[e1,it|ηi] = 0.

Unlike the standard CFE approaches, which all assume homogeneous dynamics in

the TFP, the TFP specification in Assumption 4′ allows for firm-specific persistence in

TFP through the term ηi. We do not impose any restrictions on the statistical relation

between ωit−1 and ηi; hence they can be arbitrarily correlated with each other. In this

sense, we can see ηi as the fixed effect in panel data models.

We consider a particular version of (12) where E [ωit|ωit−1, ηi] = ηi + h(ωit−1) for

some unknown function h(·). This way we separate the persistent TFP component, ηi,

from the rest of it. This specification yields a nonparametric panel autoregression with

fixed effects:

ωit = ηi + h(ωit−1) + e2,it. (14)

Under the above TFP specification, the first step of the estimation procedure is the

same as in other CFEs except for adding the firm fixed effect ηi. One can still use the

first-stage regression (6) in order to estimate βl and Φ (·). Under Assumptions 1-3 and

Assumption 4′, at the second stage we have

E
[
vait − litβ̂l|kit, ωit−1, ηi

]
= kitβk + E [ωit|kit, ωit−1, ηi] + E [e1,it + e2,it|kit, ωit−1, ηi]

for a given β̂l obtained at the first stage, where E [e1,it + e2,it|kit, ωit−1, ηi] = 0. By
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letting E [ωit|ωit−1, ηi] = ηi + h(ωit−1) as in (14), the regression

vait − litβ̂l = kitβk + E [ωit|ωit−1, ηi] + eit

= ηi + kitβk + h(ωit−1) + eit

with eit = e1,it + e2,it has no endogeneity problem. Noting that ωit−1 = Φit−1 − kit−1βk,

we can consistently estimate βk from a semiparametric panel regression with a firm-

specific fixed effect at the second stage:

vait − litβ̂l = ηi + kitβk + h(Φ̂it−1 − kit−1βk) + eit (15)

with the unknown h (·) approximated by a (fixed-order) polynomial and β̂l and Φ̂it−1

obtained from the first stage.

Alternatively, in the spirit of Wooldridge (2009), all the parameters in the above

equation can be estimated in one stage, by running

vait = ηi + litβl + kitβk + f(kit−1,mit−1, zit−1) + eit, (16)

which is the approach we take. As noted in Ahn and Schmidt (1995), Arellano and

Bover (1995) and Blundell and Bond (1998), we can estimate the coefficients βl, βk, as

well as the parameters of the polynomial approximation f(kit−1,mit−1, zit−1), from the

following moment conditions:

E[∆xis(eit + ηi)] = 0 for s ≤ t− 1 and t = 2, · · · , T , (17)

where xis = (lis, kis+1,mis, zis+1)
′. The moment conditions in (17) are valid when xis is

stationary over t, because under stationarity E [∆xisηi] = 0.
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Remark 1 Our estimation approach involves estimating equation (16) in levels using

the first-differenced instruments in the moment conditions (17). As an alternative, one

can estimate equation (16) in first differences with moment conditions (17) in levels,

E [∆eit|{(lis, kis+1,mis, zis+1)}s≤t−2] = 0, (18)

or combine the moment conditions in (17) and (18) in the same GMM estimator. Under

the usual assumptions, the moment conditions (18) are valid even for non-stationary

instruments. However, this approach should be used with caution in the presence

of measurement error in factor inputs, because the first-differencing of equation (16)

will greatly increase the share of measurement error in the regressors, rendering the

estimates inconsistent. On the other hand, our approach, while not immune to the bias

due to measurement error, will not exacerbate this bias by first-differencing. A more

complete treatment of measurement error within our estimation framework is left for

further research.

Remark 2 We can add a fixed effect µi in the first-stage regression (6) as well, which

could control for firm heterogeneity in the production function, some measurement

error in inputs, or some omitted (time-invariant) factors in the production function

that the productivity fixed effect ηi does not capture. Doing so will require running our

estimator in two steps, estimating

vait = litβl + Φ (kit,mit, zit) + µi + e1,it (19)

at the first step. Since µi can be arbitrarily correlated with (lit, kit, ωit) or (lit, kit,mit, zit),

adding it amounts to extending the scalar unobservability Assumption 2 to include per-

sistent unobservables. The moment conditions for estimating (19) remain the same.
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3.2 Comparison of CFE-FE with the dynamic panel estima-

tors with fixed effects

The CFE-FE is related to the dynamic panel estimators with firm fixed effects. Un-

der (14) and the conditions specified in Lee (2014), TFP can be represented as a

stationary β-mixing process conditional on ηi. Specifically, ωit can be rewritten as

a combination of persistent (time-invariant) and transient (time-varying) elements,

ωit = F (ηi, {e2,it−j}∞j=0), for some function F (·, ·), in which the persistent component of

TFP is represented by ηi and the transient component is represented by a combination

of {e2,it−j}∞j=0. For instance, assuming a linear stationary autoregressive process for

TFP as in (13), we obtain

ωit = ηi + γωit−1 + e2,it =
ηi

1− γ
+
∞∑
j=1

γje2,it−j.

In the above expression, TFP is a simple sum of the persistent component bi = ηi/(1−γ)

and the transient component ait =
∑∞

j=1 γ
je2,it−j.

In fact, in this linear specification, CFE-FE can be rewritten as the dynamic panel

regression as Blundell and Bond (1998, 2000):

vait = ηi + γvait−1 + (lit − γlit−1)βl + (kit − γkit−1)βk + ξit

with ξit = (uit − γuit−1) + e2,it. Both the CFE-FE and dynamic panel estimators such

as those in Blundell and Bond (1998, 2000) will yield the same results when they share

the same initial conditions under (14) and the conditions in Lee (2014). However, this

identity will only hold when E [ωit|ωit−1, ηi] is linear as in (13). When E [ωit|ωit−1, ηi] is

nonlinear, the dynamic panel approach will result in inconsistent estimates. Since our

approach is nonparametric in E [ωit|ωit−1, ηi], similar to the original CFE-OP, it will
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yield consistent estimates even under nonlinear Markov dynamics in ωit.

As an illustration, consider E [ωit|ωit−1, ηi] = ηi+γ1ωit−1+γ2ω
2
it−1. ThoughE [ωit|ωit−1, ηi]

is still linear in parameters, this quadratic specification cannot be fully controlled in

the dynamic panel regression above, hence the regression error term becomes ξit =

γ2ω
2
it−1 + (uit − γ1uit−1) + e2,it. Then, since ω2

it−1 can be correlated with vait−1, lit−1,

or kit−1, the dynamic panel estimators will not be consistent without more exogenous

instruments.

3.3 Heterogeneous investment response to TFP components

One of the benefits of the framework from which we have derived CFE-FE (Section

3.1) is that we can extend it to allow investment to respond differently to the persistent

and transient TFP components. The existing CFEs assume that investment response

to a given change in TFP will be the same regardless of whether it is caused by per-

sistent or short-term components. This assumption may not be true, in which case the

moment conditions (11) can be violated. For example, financial constraints that new

firms typically face will lengthen the accumulation of their capital stock to the optimal

level given their productivity (Moll, 2014). Then, the investment it takes to build up

the required capital will be little affected by short-term productivity shocks along the

transition path towards the optimal scale. Factor adjustment costs further dampen the

reaction of a firm to short-term productivity shocks. As Cooper and Haltiwanger (2006)

show, capital adjustment costs mute the response of firm investment to productivity

shocks with fast mean reversion as compared to more persistent productivity shocks.

Allowing for firm fixed effects in the control function as in Assumption 4′ can resolve

this problem. For instance, consider the following investment function:

iit = φ ([ait + δbi], kit, zit) = φ ([ωit + (δ − 1)bi], kit, zit) , (20)
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where 0 < δ 6= 1 is set to allow for investment responses to bi and to ait to be different.

Inverting (20) for [ωit + (δ − 1)bi] gives the control function

ωit = g (kit, iit, zit) + (1− δ)bi, (21)

which one can approximate in the usual way but with added firm fixed effects at the

first stage and then proceed to the second stage. Hence, if Assumptions 1-3 and 4′

are satisfied, a CFE with a fixed effect in the control function will produce consistent

estimates. We leave the more general case of investment being an arbitrary function of

ait and bi, as well as micro-foundation of this case, for further research.

4 Empirical results

In this section we apply a selection of existing estimators to two popular datasets in

the firm productivity literature to show that they fail to account for persistence in firm

productivity, relegating part of it to the error term. We also demonstrate that our

estimators absorb much of this persistence, thus reducing the potential transmission

bias that cannot be controlled by conventional CFEs. We report the results from both

value added and gross output specifications of the production function.

4.1 Data

The first dataset comes from Instituto Nacional de Estadistica and covers all Chilean

manufacturing plants with more than 10 employees during the years between 1979-

1996. These data have been used in many studies of firm-level productivity, including

Levinsohn and Petrin (2003), Gandhi, Navarro, and Rivers (2011), and Ackerberg,

Caves, and Frazer (2015), as well as in applications of productivity analysis in other

contexts, most notably Pavcnik (2002), Kasahara and Rodrigue (2008), and Petrin and

Levinsohn (2013). For each of the 10,927 plants in our sample, the data include the
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four-digit ISIC industry code identifier, gross output, material inputs, capital stock and

investments, and labor input measured in person-years, converted where necessary into

real values using industry price deflators. A more detailed description of the data is

available in Levinsohn and Petrin (2003).

The second dataset comes from the Danish Business Statistics Register, maintained

by Statistics Denmark, and includes all firms registered in Denmark. In this study we

use information on manufacturing firms for the years 1995-2007. The variables observed

in each year include the four-digit NACE industry identifier, total output, value added,

fixed assets, investments, material inputs, and employment (headcount measure). Lentz

and Mortensen (2008), Munch and Skaksen (2008), Stoyanov and Zubanov (2012), and

de Loecker and Warzynski (2012) used these data.

4.2 Estimation results

Tables 1 and 2 present the OLS and the standard control function estimation results

of the production function for Chile and Denmark, respectively. In each table, column

“OLS” shows the linear regression results of (1); column “OLS-FE” shows the estima-

tion results of linear regression of (1) with fixed effect (i.e., the within-group estimator);

column “OP” shows the standard control function estimation results of Olley and Pakes

(1996) or Levinsohn and Petrin (2003); and column “WOP” shows the estimation re-

sults using the Wooldridge (2009) GMM approach.4 The rest of the columns present

the WOP results for the three largest manufacturing industries in each country. The

standard errors in all specifications are estimated from the residuals clustered at the

firm level.

Tables 1 and 2 also report the first-order autoregressive coefficient estimates of the

regression residuals: ρ1 is that of the first-stage regression residuals from (6), and ρ2

4We use the Stata command ivreg2 for the GMM estimation, after approximating the unknown
functions by polynomials.
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is that of the second-stage regression residuals from (7). We compute the autocorre-

lation coefficients based on our estimates of the first- and second-stage residuals. The

former are estimated from equation (4) which gives the first-stage residuals e1,it plus

the approximation error. We compute the second-stage residuals e2,it as the difference

between the total residual from (7) and first-stage residuals. Although our estimates of

the residuals are imperfect because of the presence of approximation error, the residual

autocorrelation coefficients calculated from them are still informative.

TABLE 1 HERE.

TABLE 2 HERE.

Tables 1 and 2 show that the overall residual autocorrelation coefficient ρ in the

OLS and OP regressions without fixed effects is above 0.5. Furthermore, as seen in the

correlogram in Figure 3, the high residual autocorrelation hardly declines with time. An

interesting case is the OLS regression with fixed effects in column “OLS-FE”, where the

residual autocorrelation is much lower: 0.088 for the Danish and 0.241 for the Chilean

samples. The comparison between the regressions with and without firm fixed effects,

as well the stability of residual autocorrelation over time, hints at the presence of a

persistent component in TFP.

FIGURE 3 HERE.

The coefficients ρ1, ρ2 reveal a strong autocorrelation in the first-stage, and a weaker

but still considerable autocorrelation in the second-stage residuals. The high values of

ρ1 (0.54 and higher) imply the presence of a persistent component in the TFP that

the control function has not captured, which is in breach of the scalar unobservability

Assumption 3. Significant autocorrelation in the second-stage residuals implies the

presence of a firm-specific drift in the TFP process, contradicting Assumption 4. Thus,

the estimation results so far suggests that a CFE with firm fixed effects in the control

function and in the TFP process is required.
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Another potential source of persistence in the CFE residuals may be a higher-

order Markov process in TFP – a threat to the consistency of CFE other than a firm-

specific persistent TFP component. The presence of a higher-order Markov process in

productivity can be examined and addressed by extending the existing CFEs to allow

for a second-order Markov process,

ωit = E [ωit|ωit−1, ωit−2] + e2,it,

at the cost of extra assumptions on the control function and at least one additional

proxy variable, besides materials, to separately identify the two lags of ωit (Ackerberg,

Lanier Benkard, Berry, and Pakes, 2007; Stoyanov and Zubanov, 2014). We implement

the estimator proposed in these studies by choosing capital investment as the additional

proxy.

TABLE 3 HERE.

Table 3 reports the regression estimates and residual autocorrelations for the value

added specification with firm productivity following a second-order Markov process

without firm fixed effects. This modification produces second-stage residuals e2,it that

are less strongly autocorrelated than those from the standard CFE. However, the first-

stage residual autocorrelation is essentially unaffected in both the Chile and Denmark

samples, implying that missing higher-order Markov terms are unlikely to be an im-

portant factor contributing to residual persistence. Its most likely source remains to

be the presence of firm-specific persistence in TFP, which our estimator is capable of

addressing.

Table 4 shows the factor input elasticities using parameter estimates from the CFE-

FE for the Chilean and Danish samples and, in square brackets, their differences with

the respective estimates from the conventional CFE (columns 4 to 7 in Tables 1 and
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2). The table also reports the first-order autoregression coefficient estimates of the

regression residuals, ρ1 and ρ2, as in Tables 1 and 2.

[TABLE 4 HERE]

The results in Table 4 support the inclusion of firm fixed effects by showing a consid-

erable reduction in the magnitude of residual autocorrelation coefficients as compared

to the standard CFE estimates in Tables 1 and 2: a range of 0.106-0.289 for Chile and

0.006-0.075 for Denmark in the CFE specifications with fixed effects versus 0.5-0.6 with-

out. The omitted factors which were the sources of residual autocorrelation do not seem

to be random effects in the error terms e1,it or e2,it since the input elasticity estimates

change once fixed effects are introduced. The changes in the input elasticity estimates

reflect correlations between persistent TFP heterogeneity, omitted in the conventional

CFEs, and factor inputs. For example, in the value added specification estimated on

the Danish sample, the capital input elasticity estimate goes down by two-fifth, or by

7.5 standard errors, and the estimate of labor coefficient goes up by one-fourth, or by

10 standard errors. In the gross output specification, it is the coefficients on labor and

material inputs that change the most as compared to their CFE-WOP estimates.

5 Conclusion

In this paper, we have identified a potential transmission bias in the production function

estimators based on the control function approach. This bias occurs because the control

function does not fully capture productivity persistence. We identify and micro-found

a case when this happens: when productivity follows a dynamic process with a firm-

specific effect. We show that this case can be dealt with by introducing firm fixed effects

in the control function and derive a consistent estimator, the CFE-FE. We also extend

the CFE-FE framework to address the case when investment (or materials) responds
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differently to transient and persistent productivity components, and show that CFE-FE

is consistent under the assumptions we outline.

We show our estimator in action by reporting a substantial firm-specific component

in the regression residuals estimated from data on Chilean and Danish manufacturing

firms. The presence of this component is a marker of the transmission bias, since a

correctly specified control function would absorb all relevant firm heterogeneity. We

then show that applying our estimator greatly reduces persistence in the residuals.

Importantly to applied researchers, our estimator easy to implement. An approximation

of the control function allows for an uncomplicated GMM procedure which can be

implemented using the Stata ivreg2 command.

The advantages of CFE-FE notwithstanding, allowing for fixed effects can exacer-

bate the attenuation bias due to measurement error (Griliches and Hausman, 1986),

which poses a potential tradeoff between the transmission bias in the conventional CFEs

and the attenuation bias in CFE-FE. Addressing this tradeoff is left for further research.

Currently, there is a case for caution in using our estimator when the persistent TFP

component is weak and the extent of measurement error in the data is large.
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Table 1. Production function estimation results from existing estimators, Chile. 
  (1) (2) (3) (4) (5) (6) (7) 
Estimator OLS OLS-FE OP WOP WOP WOP WOP 

Industry sample All manufacturing industries Food 
products 

Fabricated 
metals Textiles 

     
(311) (381) (321) 

  Dependent variable: log value added 

Labor 1.023 0.813 0.689 0.758 0.582 0.795 0.623 
(0.018) (0.016) (0.017) (0.017) (0.027) (0.045) (0.047) 

Capital 0.308 0.128 0.387 0.349 0.321 0.221 0.259 
(0.010) (0.009) (0.018) (0.018) (0.035) (0.056) (0.048) 

N 54,801 54,801 49,228 49,265 14,823 4,171 4,189 

ρ 0.696 0.264 0.644 0.647 0.491 0.569 0.576 
(0.003) (0.007) (0.007) (0.007) (0.014) (0.025) (0.024) 

ρ1  
 

0.625 0.637 0.496 0.535 0.540 

 
 

(0.006) (0.007) (0.014) (0.024) (0.023) 

ρ2  
 

-0.222 -0.042 0.155 -0.046 0.171 
    (0.008) (0.016) (0.020) (0.074) (0.029) 

 The share of between-firm variation in residuals 
e1 0.57 n/a 0.51 0.53 0.37 0.47 0.46 
e2     0.16 0.19 0.11 0.24 0.11 

  Dependent variable: log output 

Labor 
0.301 0.285 0.246 0.243 0.159 0.286 0.233 

(0.008) (0.008) (0.010) (0.009) (0.011) (0.025) (0.021) 

Capital 0.088 0.044 0.198 0.113 0.057 0.111 0.087 
(0.004) (0.004) (0.045) (0.009) (0.015) (0.030) (0.023) 

Materials 0.722 0.645 0.714 0.740 0.866 0.687 0.766 
(0.005) (0.007) (0.007) (0.006) (0.008) (0.019) (0.015) 

N 54,857 54,801 49,228 49,265 14,823 4,171 4,189 

ρ 0.644 0.241 0.708 0.702 0.570 0.620 0.577 
(0.003) (0.008) (0.006) (0.013) (0.032) (0.028) (0.032) 

ρ1  
 

0.679 0.705 0.539 0.648 0.547 

 
 

(0.012) (0.015) (0.037) (0.031) (0.039) 

ρ2  
 

-0.275 0.136 0.344 0.376 0.102 
    (0.013) (0.016) (0.037) (0.073) (0.065) 

 The share of between-firm variation in residuals 
e1 0.53 n/a 0.60 0.64 0.48 0.56 0.54 
e2     0.21 0.35 0.58 0.38 0.34 
Note: Standard errors in parentheses are clustered by firm. WOP stands for the Wooldridge (2009) modification of the 
OP estimator. For OP and WOP estimators, the share of between-firm variation in residuals is calculated for the first-
stage regression. 

  



Table 2. Production function estimation results from existing estimators, Denmark. 
  (1) (2) (3) (4) (5) (6) (7) 
Estimator OLS OLS-FE OP WOP WOP WOP WOP 

Industry sample All manufacturing industries Fabricated 
metals Printing Food 

products 

     
(28) (22) (15) 

  Dependent variable: log value added 

Labor 0.917 0.723 0.631 0.658 0.724 0.686 0.655 
(0.004) (0.003) (0.006) (0.005) (0.010) (0.014) (0.012) 

Capital 0.139 0.108 0.203 0.102 0.094 0.079 0.105 
(0.003) (0.003) (0.002) (0.003) (0.005) (0.007) (0.008) 

N 151,556 151,556 122,938 122,902 24,235 15,061 14,890 

ρ 0.777 0.136 0.648 0.554 0.528 0.554 0.535 
(0.002) (0.008) (0.007) (0.008) (0.015) (0.019) (0.031) 

ρ1  
 

0.559 0.582 0.550 0.554 0.541 

 
 

(0.006) (0.007) (0.015) (0.015) (0.022) 

ρ2  
 

-0.143 -0.212 -0.163 -0.180 -0.164 
    (0.005) (0.007) (0.014) (0.028) (0.020) 

 The share of between-firm variation in residuals 
e1 0.75 n/a 0.56 0.56 0.51 0.55 0.52 
e2     0.26 0.21 0.32 0.20 0.29 

  Dependent variable: log output 

Labor 0.436 0.476 0.425 0.352 0.441 0.478 0.312 
(0.006) (0.002) (0.006) (0.005) (0.009) (0.015) (0.006) 

Capital 0.055 0.059 0.031 0.019 0.025 0.017 0.019 
(0.002) (0.002) (0.001) (0.002) (0.003) (0.005) (0.004) 

Materials 0.527 0.388 0.521 0.601 0.516 0.542 0.682 
(0.005) (0.008) (0.005) (0.004) (0.008) (0.012) (0.005) 

N 151,504 151,504 123,082 123,082 23,880 15,027 14,887 

ρ 0.593 0.088 0.581 0.559 0.577 0.496 0.555 
(0.003) (0.011) (0.008) (0.009) (0.018) (0.021) (0.023) 

ρ1  
 

0.572 0.566 0.580 0.534 0.553 

 
 

(0.007) (0.008) (0.017) (0.017) (0.023) 

ρ2  
 

-0.206 -0.184 -0.167 -0.088 -0.185 
    (0.005) (0.005) (0.014) (0.018) (0.015) 

 The share of between-firm variation in residuals 
e1 0.57 n/a 0.56 0.54 0.55 0.51 0.47 
e2     0.24 0.29 0.31 0.25 0.24 
Note: Standard errors in parentheses are clustered by firm. WOP stands for the Wooldridge (2009) modification of the 
OP estimator. For OP and WOP estimators, the share of between-firm variation in residuals is calculated for the first-
stage regression. 

 



Table 3. Estimation results from the benchmark CFE-OP with a second-order Markov 
process in TFP. 
  (1) (2) (3) (4) (5) (6) (7) (8) 

 
Chile Denmark 

 

All Food 
products 

Fabricated 
metals Textiles All Fabricated 

metals Printing Food 
products 

  
(311) (381) (321) 

 
(28) (22) (15) 

Labor 0.504 0.425 0.594 0.527 0.683 0.738 0.714 0.656 
(0.010) (0.020) (0.029) (0.031) (0.006) (0.012) (0.017) (0.013) 

 
[-0.254] [-0.157] [-0.201] [-0.096] [0.025] [0.014] [0.028] [0.001] 

Capital 0.366 0.314 0.442 0.231 0.080 0.069 0.066 0.093 
(0.022) (0.045) (0.067) (0.058) (0.003) (0.006) (0.007) (0.008) 

 
[0.017] [-0.007] [0.211] [-0.028] [-0.022] [-0.025] [-0.013] [-0.012] 

N 16,081 4,127 1,503 1,261 83,948 16,604 10,080 9,857 

ρ 0.730 0.553 0.356 0.588 0.577 0.554 0.579 0.534 
(0.011) (0.025) (0.058) (0.040) (0.008) (0.016) (0.020) (0.025) 

ρ1 0.707 0.519 0.616 0.589 0.575 0.553 0.577 0.558 
(0.012) (0.028) (0.033) (0.041) (0.008) (0.017) (0.018) (0.024) 

ρ2 -0.066 -0.173 -0.026 -0.051 -0.125 -0.164 -0.058 -0.117 
(0.016) (0.019) (0.088) (0.030) (0.012) (0.019) (0.020) (0.027) 

  The share of between-firm variation in residuals 
e1 0.63 0.47 0.56 0.55 0.55 0.51 0.53 0.54 
e2 0.17 0.10 0.26 0.17 0.24 0.19 0.28 0.26 
Note: Standard errors in parentheses are clustered by firm. For OP and WOP estimators, the share of between-firm variation in 
residuals is calculated for the first-stage regression. 

 

 

  



Table 4. Production function estimation results from WOP with fixed effects 
    (1) (2) (3) (4) (5) (6) (7) (8) 

 
Chile Denmark 

 

All 
industries 

Food 
products 

Fabricated 
metals Textiles 

All 
industries 

Fabricated 
metals Printing 

Food 
products 

  
(311) (381) (321) 

 
(28) (22) (15) 

  Dependent variable: log value added 

Labor 0.739 0.551 0.732 0.709 0.841 0.850 0.912 0.810 
(0.020) (0.050) (0.067) (0.071) (0.017) (0.024) (0.034) (0.045) 

 
[-0.019] [-0.031] [-0.063] [0.086] [0.183] [0.126] [0.226] [0.155] 

Capital 0.360 0.359 0.366 0.301 0.071 0.060 0.065 0.098 
(0.020) (0.037) (0.074) (0.048) (0.004) (0.007) (0.009) (0.010) 

 
[0.011] [0.038] [0.145] [0.042] [-0.031] [-0.034] [-0.014] [-0.007] 

N 44,063 13,285 3,302 4,000 101,248 19,354 12,217 12,066 

ρ 0.298 0.255 0.258 0.219 0.059 0.061 0.022 0.034 
(0.008) (0.014) (0.030) (0.028) (0.010) (0.019) (0.023) (0.026) 

ρ1 0.296 0.227 0.215 0.251 0.057 0.061 0.029 0.054 
(0.009) (0.014) (0.029) (0.032) (0.011) (0.019) (0.022) (0.027) 

ρ2 
0.012 0.040 0.199 0.008 -0.162 -0.081 0.080 -0.050 

(0.037) (0.028) (0.071) (0.101) (0.012) (0.026) (0.042) (0.027) 

  Dependent variable: log output 

Labor 0.185 0.131 0.288 0.238 0.496 0.493 0.544 0.282 
(0.017) (0.023) (0.040) (0.047) (0.018) (0.023) (0.031) (0.023) 

 
[-0.058] [-0.028] [0.002] [0.005] [0.144] [0.052] [0.066] [-0.030] 

Capital 0.121 0.073 0.048 0.090 0.027 0.020 0.055 0.027 
(0.015) (0.024) (0.054) (0.039) (0.003) (0.005) (0.003) (0.006) 

 
[0.008] [0.016] [-0.063] [0.003] [0.008] [-0.005] [0.038] [0.008] 

Materials 0.762 0.855 0.688 0.737 0.453 0.461 0.389 0.683 
(0.014) (0.022) (0.034) (0.037) (0.015) (0.020) (0.024) (0.018) 

 
[0.022] [-0.011] [0.001] [-0.029] [-0.148] [-0.055] [-0.153] [0.001] 

N 17,683 4,540 1,464 1,322 101,377 19,381 12,224 12,077 

ρ 0.204 0.161 0.226 0.106 0.006 0.05 0.075 0.044 
(0.017) (0.043) (0.057) (0.045) (0.001) (0.030) (0.030) (0.031) 

ρ1 0.202 0.135 0.148 0.089 0.064 0.055 0.071 0.048 
(0.017) (0.049) (0.055) (0.046) (0.012) (0.029) (0.030) (0.031) 

ρ2 0.037 0.054 0.021 0.052 -0.115 -0.049 0.080 -0.073 
(0.026) (0.069) (0.034) (0.048) (0.009) (0.014) (0.024) (0.031) 

Note: Standard errors in parentheses are clustered by firm. For OP and WOP estimators, the share of between-firm variation in 
residuals is calculated for the first-stage regression 

  



 

Figure 1. Value added per worker of new firms. 

 

 

  

Denmark

6
6.

1
6.

2
6.

3
6.

4

1 2 3 4 5 6 7 8 9 10 11 12
Firm age

(A) Unadjusted

Denmark

6.
15

6.
2

6.
25

6.
3

6.
35

6.
4

1 2 3 4 5 6 7 8 9 10 11 12
Firm age

(B) Adjusted for firm survival

Denmark

-.2
-.1

5
-.1

-.0
5

0
.0

5

1 2 3 4 5 6 7 8 9 10 11 12
Firm age

(C) Relative to existing firms

Chile

7
7.

5
8

8.
5

1 3 5 7 9 11 13 15 17
Firm age

Chile

7
7.

5
8

8.
5

1 3 5 7 9 11 13 15 17
Firm age

Chile

-.2
5

-.2
-.1

5
-.1

-.0
5

1 3 5 7 9 11 13 15 17
Firm age



Figure 2. Value added per worker of new firms, by tercile in the year of entry. 
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Figure 3. Autocorrelation correlogram for the regression residuals. 
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